
Fine-grained Nested Virtual Machine Performance
Analysis Through First Level Hypervisor Tracing

Hani Nemati∗, Suchakrapani Datt Sharma†, and Michel R. Dagenais‡
Department of Computer and Software Engineering,

Polytechnique Montreal, Quebec, Canada
Email: {∗hani.nemati, †suchakrapani.sharma, ‡michel.dagenais}@polymtl.ca

Abstract—The overhead and complexity of virtualization can
be decreased by the introduction of hardware-assisted virtualiza-
tion. As a result, the ability to pool resources as Virtual Machines
(VMs) on a physical host increases. In nested virtualization, a
VM can in turn support the execution of one or more VM(s).
Nowadays, nested VMs are often being used to address compat-
ibility issues, security concerns, software scaling and continuous
integration scenarios. With the increased adoption of nested
VMs, there is a need for newer techniques to troubleshoot any
unexpected behavior. Because of privacy and security issues,
ease of deployment and execution overhead, these investigation
techniques should preferably limit their data collection in most
cases to the physical host level, without internal access to the
VMs.

This paper introduces the Nested Virtual Machine Detection
Algorithm (NDA) - a host hypervisor based analysis method
which can investigate the performance of nested VMs. NDA
can uncover the CPU overhead entailed by the host hypervisor
and guest hypervisors, and compare it to the CPU usage of
Nested VMs. We also developed a nested VM process state
analyzer to detect the state of processes along with the reason
for being in that state. We further developed several graphical
views, for the TraceCompass trace visualization tool, to display
the virtual CPUs of VMs and their corresponding nested VMs,
along with their states. These approaches are based on host
hypervisor tracing, which brings a lower overhead (around 1%)
as compared to other approaches. Based on our analysis and the
implemented graphical views, our techniques can quickly detect
different problems and their root causes, such as unexpected
delays inside nested VMs.

Keywords—Nested Virtualization; KVM; Performance Analysis;
LTTng; TraceCompass; Process State

I. INTRODUCTION

Virtualization is an emerging technology that enables on-
demand access to a pool of resources through a Pay as Use
(PaU) model. Sharing resources plays an important role for
cloud computing. Many enterprises are beginning to adopt
VMs in order to optimally utilize their resources. In partic-
ular, application workloads vary due to time and geographic
location, and cloud computing lets the end-users scale re-
sources quickly with live migration. However, debugging,
troubleshooting, and performance analysis of such a large-scale
distributed systems still is a big challenge[1]. This challenge
becomes more complicated when VMs could run another
hypervisor inside (Nested VM). A nested VM is a guest that
runs inside another VM on top of two or more hypevisors.
The Infrastructure as a Service (IaaS) provider scheme could
give the cloud user the ability of managing and using their
own hypervisor as a VM. However, the diagnosis of added
latency and response time of Nested VMs is quite complex
due to different levels of code execution. To the best of
our knowledge, there is no pre-existing efficient technique to

analyze the performance of Nested VMs. Notably, the required
technique should troubleshoot unexpected behavior of Nested
VMs without internal access to VMs and Nested VMs due to
security issues and extra overhead.

This paper focuses on studying the behavior of nested VMs.
In particular, we trace the host hypervisor to detect nested
VMs and the different state of their running processes. Our
technique can investigate the root cause of latency in the nested
VM by just tracing the host. A massive amount of information
is buried under the vCPUs of nested VMs. This information
could be revealed by analysing the interaction between the host
hypervisor, VM hypervisors and nested VMs. Our technique
leverages existing static tracepoints inside the host hypervisor
along with our added new tracepoints to convert the tracing
information to meaningful visualization.

Our main contributions in this paper are: First, our analysis
based on host hypervisor tracing enables the cloud administra-
tor to differentiate different states (e.g., Executing Nested VM
code, Guest Hypervisor Code, and Host Hypervisor Code) of
nested VMs. All the tracing and analysis part is transparent to
the VMs and also nested VMs. As a result, VMs and nested
VMs are not being accessed during the analysis. This is critical,
since in most situations, due to security reasons, access to the
VMs are restricted. Second, we propose a method to detect
different states of processes not only inside the VMs, but
also inside nested VMs. This method can profile processes
inside VMs and nested VMs. Third, we implemented different
graphical views as follows: first, a graphical view for vCPU
threads from the host point of view. It presents a timeline
for each vCPU with different states of the VM; second, we
developed a graphical view for nested VMs which shows
vCPU threads of nested VMs with its level of code execution
and states.

The rest of this paper is organized as follows: Section II
presents a summary of other existing approaches for analysing
and debugging nested VMs. Section III introduces some back-
ground information about nested virtualization technology and
presents the different states of applications inside the nested
VMs and their requirements. In section IV, we present the
algorithm used to detect nested VMs from vCPU threads of the
VM that contains nested VMs. In V, we explain how we can
find the different states of vCPUs of nested VMs. In section
VI, we explain the different layers of the architecture that we
use in our paper. We also describe the tracer that we used to
gather meaningful information about the VMs. In section VII
and VIII, we present our experimental results. We also propose
another method for detecting VMs and we compare these two
approaches in terms of overhead in section IX. Section X
concludes the paper with directions for future investigations.

II. RELATED WORK

Several monitoring and analysis tools have been enhanced
for practical use. Most of them are closed-sourced and infor-
mation about how they monitor VMs is a secret. Based on
our knowledge, there is no tool for debugging and analyzing
nested VMs. In this section we epitomize most available tools
for monitoring VMs and briefly propose an approach for using
them to debug nested VMs. Contemporary use of nested VMs
is more for the purpose of software scaling, compatibility,
and security. In addition, many network services could be
virtualized (as main goal of NFV) and hosted on nested VMs.
Software as a Service (SaaS) providers are the best clients
of nested virtualization. SaaS providers can encapsulate their
software in a nested VM on an existing cloud infrastructure
(e.g, Google Cloud and Amazon AWS). Ravello[2] has im-
plemented a high performance nested virtualization called as
HVX. It allows the user to run unmodified nested VMs on
Google cloud and Amazon AWS without any change whatso-
ever. Nested virtualization is also being used for Continuous
Integration (CI). CI integrates code, builds modules and runs
tests when they are added to the larger code base. Because
of security and compatibility issues, the building and testing
phases should be run in an isolated environment. CI service
providers can execute each change immediately in a nested
VM.

McAfee Deep Defender is another example of nested VM
use. For security reasons, it has its own virtual machine
monitor (VMM). Furthermore, one of the features in Windows
7 for professional and ultimate editions is the XP mode. In
this mode, a VM runs Windows XP for compatibility reason.
Thus, Windows 7 users can execute Windows XP applications
without any change. Correspondingly, the XP mode will be
run in a nested VM if Windows 7 is running in a VM.

AWS CloudWatch[3] is a closed-sourced performance
monitoring tool that can report CPU, Network, Memory, and
Disk usage for Amazon EC2 cloud. Ceilometer[4] is the
metering, monitoring and alarming tool in Openstack. It has
basic metrics for physical CPUs like CPU time usage, average
CPU utilization, and number of vCPUs for each VM. In case
of nested VMs however, they can not provide any information.
PerfCompass[5] is a VM fault detection tool for internal and
external faults. It can detect if the fault has global or local
impact. As part of their implementation, they trace each and
every VM with LTTng[6]. The data is eventually used to
troubleshoot VMs and find out problems like latency in I/O,
memory cap problem and CPU cap problem. Their approach,
however, needs to trace each VM, which significantly increases
the overhead on the VMs. Their approach can be ported to
nested VMs by tracing each nested VM. Nonetheless, as we
will see in section IX, the overhead of tracing nested VMs is
much larger than with our proposed method. Novakovic et al.
[7] relies on some performance counters and Linux tools like
iostat for monitoring VMs. Linux provides some performance
monitoring tools like vmstat, and iostat which gather statistics
by reading proc files with significant overhead. In the case
where these tools for nested VMs are used, the added overhead
could be significant.

In [8], they proposed a technique to investigate different
states of VMs. They could find the preempted VM along with
the cause of preemption. In their case, they trace each VM

and also the host kernel. After tracing, they synchronize the
trace from each VM with that from the host. Then, they search
through all threads to find preempted threads. Although this
work can be used for nested VMs, the extra efforts required,
(tracing the VMs and Nested VMs, synchronizing the traces,
finding preempted VMs by searching all available threads in
the host and VMs), are all time consuming. Analysing nested
VMs has been addressed in [9]. They proposed a technique
to analyze nested VMs using hypervisor memory forensics.
Their tool can analyse nested VM setups and corresponding
hypervisors, but does not provide any information about nested
VMs states and their execution. In summary, no study on fine-
grained performance analysis of nested VMs was found.

III. NESTED VIRTUAL MACHINE STATES

Origins of virtualization technology can be traced back to
the ideas of time-shared computing introduced by IBM in the
early 1970s[10]. One of the best ways to increase resource
utilization on expensive servers, with powerful processors and
huge amount of memory and disk space, is by using virtual-
ization technology. Until recently, virtualization on commodity
servers used to be complex and slow due to machine emulation
and on-the-fly binary translation of privileged instructions. In
due time, with the introduction of Hardware-assisted virtual-
ization (Intel-VT and AMD-V), the overhead and complex-
ity was reduced. It allows the execution of non-privileged
executables of VMs directly on the physical CPU. It also
provides better management of memory and for assigning I/O
devices to VMs. Intel-VT (and similarly AMD-V) supports two
operating modes, root mode and non-root mode for executing
hypervisor code and VM code, respectively. Furthermore, non-
privileged instructions of VMs are executed as non-root mode,
and privileged instructions are executed as root mode (at a
higher privilege level). The transaction between root mode and
non-root mode is called virtual machine extensions (VMX)
transition. In each VMX transition, environment specifications
of VMs and the hypervisor are stored in an in-memory
Virtual Machine Control Structure (VMCS). This structure is
organized into six logical groups, namely guest state area, host
state area, vm-execution control fields, vm-exit control field,
vm-entry control field, and vm-exit information field[11].

In the transition between root mode to non-root mode,
the state of the hypervisor is saved into VMCS and the
environment specifications of the VM are loaded. This is also
called a VM entry. On the other hand, in the transition between
non-root mode to root mode, the state of the VM is saved into
VMCS and the state of the hypervisor is loaded. This is called
a VM exit. The Exit reason is a field in the VMCS that changes
during a VM exit. It shows the reason for exiting from non-root
mode to root mode.

Nested VMs are also supported by Intel and AMD pro-
cessors. Figure 1 shows a single-level architecture for nested
VMs. In a single-level architecture, executing any privileged
instruction by any level of nested VMs returns to the host
hypervisor (L0). In this case, the VM hypervisor (L1) has
the illusion of running the code of the nested VM (L2)
directly on the physical CPU. However, privileged instructions
of nested VMs should be handled by the highest privileged
level. Since L1 is not the highest privileged level, L0 handles
it. As a result, whenever any hypervisor level or VM executes

Hardware

Host Hypervisor

Virtual
Machine

App App

AppApp

Virtual Machine

 VM Hypervisor

Nested
VM

Nested
VML2 L2

L1

L0

VM
C
S
1
→
2

VM
CS

0
1
→

VM
C
S 0

→
2

V
M
C
S 0

1
→

Fig. 1: Nested VM Architecture for VMX

privileged instructions, the L0 trap handler is executed. This
VMX emulation can go to any level of nesting.

Usually, there is one VMCS for each vCPU (VMCS01).
However, for one level of nested VMs there are three VMCSes
per vCPU. The VM hypervisor uses VMCS12 to contain the
environment specifications of nested VMs. As we mentioned
before, the code of nested VM can be executed directly on
the host hypervisor. In this case, the host hypervisor prepares
VMCS02 to save and store the state of nested VMs at each
VM exit and VM entry. Moreover, the host hypervisor creates
VMCS01 to execute the code of the VM hypervisor. From the
host perspective, VMCS12 is not valid, but the host hypervisor
benefits from that to update some fields in VMCS02 for each
VMX transition.

Figure 2 presents different states of a process inside a
nested VM. In general, a process inside a nested VM could be
in either of these states: host hypervisor as VMX Root (known
as L0), VM hypervisor as VMX Non-Root (known as L1),
Nested VM as VMX Non-Root (known as L2), Preemption
in L1, Preemption in L0, Wait, and IDLE. Executing any
privileged instruction causes a VM exit all the way down to
the host hypervisor. There are two possible ways of handling
any privileged instruction. Along the first handling path, L0

handles the instruction and forwards it to L1. In this case, L0’s
code is executed in root mode and L1’s code is run in non-root
mode. Eventually, L1 handles the exit reason and launches L2

in non-root mode. Along the other possible path, L0 directly
forwards the control to L2. In this scenario, the exit reason
is transparent for L1 since it happens somewhere else in the
host hypervisor level[12]. A process of a nested VM is in the
Running mode when it is in the L0, L1,or L2 state. In contrast,
the physical CPU is not running code of a nested VM if its
process is either Preemption L0, Preemption L1, or Waiting
state. This can add an unexpected delay to nested VMs since
the nested VM user is not aware of being preempted or waiting
for a physical CPU. We elaborate more on each state in the
following subsections.

A. VMX Root - L0 State

In general, for any level of virtualization, there are two
modes of execution: Root mode and Non-Root mode. In
nested virtualization, a nested VM’s OS could execute most
instructions directly on the physical CPU. However, privileged
instructions should be run by the host hypervisor. For example,
in a Linux KVM-Qemu nested VM, the KVM code of the host
hypervisor is run as VMX Root. On the other side, the code
of Qemu of a Nested VM and the code of KVM in the VM

VMX
Non-ROOT

L1

VMX
Non-ROOT

L2

VMX
ROOT
L0

kvm_exit

kvm_exit

Preempted
L1

Preempted
L0

Wait

IDLE

sched_wakeup

sched_switch

sched_switch

sched_switch sched_switch
kvm_exit
(non-hlt)

kvm_exit
(non-hlt,

CR3 changes)
kvm_exit
VMRESUME

kvm_entry

kvm_entry

Fig. 2: Nested Virtual Machine Process State Transition
hypervisor are executed as VMX Non-Root. Executing any
privileged command causes an exit to the KVM of the host hy-
pervisor. In this transition, the vm exit field in VMCS contains
the cause of exit. In Linux, the transition between root to non-
root mode is instrumented with kvm_exit. After handling the
event in VMX root mode, the VM enters the VMX non-root
mode. Moreover, the Linux nested VM exit trap handler of the
host hypervisor is instrumented with kvm_nested_vmexit.
This event shows that the VM is executing a nested VM inside.
LTTng has an appropriate module to gather all these events.
B. VMX Non-Root - L1 State or L2 State

In a nested VM, after handling a privileged instruction
through the host hypervisor, the execution control could either
pass to the VM hypervisor or the nested VM. For some
instructions, L0 handles the instruction and passes the control
to VM hypervisor for further execution. Some important VM
exit that should be forwarded to L1 for further execution
are XSETBV and CPUID. In this case, L1 handles the event
and resumes L2. Executing VMRESUME by L1 traps in L0

and thus L0 resumes L2 directly by using VMCS02. Along
another handling path, L0 directly executes the nested VM
code. Some of VM exits that are mostly caused by the
host hypervisor and which directly forward the control to L2

are RDSMR, RWMSR and External interrupt. In Linux, the
transition from VMX Root to VMX Non-Root is instrumented
by kvm_entry. For each VM entry, the CR3 register for the
process in the VM is loaded from the CR3 field of VMCS. On
the Intel platform, CR3 points to the process page table. We
use this field of the VMCS to identify that either the nested
VM is in VMX Non-Root L1 state or VMX Non-Root L2

state. The CPU scheduler of the host hypervisor schedules in
vCPU threads of nested VMs when it has something to run.
It first goes to VMX Root mode, runs the code of the VM
hypervisor and handles some events. In this case, the CR3 field
in the VMCS is the page table address of the VM hypervisor.
Finally, the VM hypervisor executes VMRESUME. The nested
VM then goes to VMX Non-Root L2 state. In this state, the
CR3 value in the VMCS shows the page table address of the
running process inside the nested VM.
C. Preemption - L0 State or L1 State

The Preemption state indicates that the vCPU of the nested
VM is running a process, but the scheduler of the host
hypervisor scheduled out the vCPU thread from a physical

CPU. This state happens often when there are not enough
physical CPUs, and the ’time slice’ of a vCPU thread expires.
For fairness, the CPU scheduler allocates an equal fraction of
’time slice’ for each thread inside any machine. As a result,
a vCPU thread of a nested VM could be preempted inside
the Host or a VM. Based on that, there are two levels of
preemption for nested VMs. The first level of preemption
happens inside the VM by the VM hypervisor. When there
are not enough vCPUs in the VM, the vCPU scheduler of the
VM starts preempting nested VMs vCPUs. Another level of
preemption happens at the host hypervisor level. In this case,
in order to let other vCPU threads to get the same amount
of CPU time, the CPU scheduler of the host schedules out
vCPU threads of nested VMs. It deteriorates further when
preemption in any level is not visible inside the nested VM
and it introduces unexpected delays to the completion time
of tasks inside nested VMs. In Linux, the sched_switch
event provides information about scheduled in and scheduled
out threads, but it does not provide any detail about the time
when preemption occurs.

As we mentioned above, preemption can happen at two
levels. Whenever a nested VM does not have any code to
execute, it voluntarily yields the physical CPU by exiting with
exit reason of hlt. This lets the VM hypervisor run another
process or nested VM. If the CR3 of the VM hypervisor of a
nested VM changes without exiting with exit reason of hlt, the
nested VM goes to the Preemption L1 state. Furthermore, if
the VM hypervisor does not have anything to run, it also exits
with exit reason of hlt. If and only if a VM is scheduled out
without executing hlt, the VM and all running nested VMs go
to the Preemption L0 state.
D. Wait State

This state represents when a nested VM has something
to execute, but it is waiting in the running queue of the
host hypervisor to run on a physical CPU. It influences the
completion time of a task. In Linux, the sched_wakeup
event shows that a thread has woken up. The duration, between
when a thread is woken up and is scheduled in, is called a Wait
state.
E. IDLE State

Whenever, a nested VM does not have anything to execute,
it exits from VMX Non-Root with exit reason of hlt. In this
case, the host CPU scheduler schedules out the vCPU thread of
the nested VM. In Linux, the CPU scheduler is instrumented
by sched_switch. This event shows the scheduled out and
scheduled in threads. Thus, if and only if a vCPU thread was
scheduled out with exit reason of hlt, it goes to the IDLE state.

IV. NESTED VM DETECTION BY TRACING L0

The two states of VMX root mode and VMX non-root
Mode could be uncovered by analysing sched_switch,
kvm_entry, and kvm_exit events. The sched_switch
event indicates when the vCPU thread of a VM is scheduled
in. The sched_switch is the most important event, since
it shows when a vCPU thread is running or IDLE. The
kvm_exit and kvm_entry events show when a vCPU
thread is in VMX Root mode and VMX Non-Root mode,
respectively. Although finding out these states could help us to
diagnose unexpected delays in VM, there is no information in

Root Root RootRoot non-root non-root non-root

Retrieve CR3

pCPU0

Virtual Machine

Nested VM

VM Hypervisor

Host HypervisorL0

Non-root Non-root Non-root

Root Root RootRoot non-root non-rootpCPU0 Non-root Non-root Non-root

V
M
C S

01

L1

L2

Fig. 3: Proposed Nested VM Detection Algorithm

the case of nested VMs being used. In this section we propose
an algorithm to detect a nested VM from the vCPU thread of
a VM in the host.

Algorithm 1 Nested VM Detection Algorithm (NDA)
1: procedure NESTED VM DETECTION(Input: event Output: Updated SHT)
2: if event == kvm exit then
3: Modify Status attribute of vCPUi in VM vCPU and nested VM vCPU as

VMX root
4: exit reason = value of exit reason field
5: Modify exit reason attribute of vCPUi as exit reason
6: end if
7: if event == vcpu enter guest then
8: CR3 = store value of CR3 field
9: if exit reason == VMLAUNCH or exit reason == VMRESUME then

10: candidate nestedVM process=CR3
11: else
12: candidate nestedVM = CR3
13: candidate process = CR3
14: end if
15: end if
16: if event == kvm nested vmexit then
17: Mark last CR3 in candidate nestedVM process as nestedVM process
18: Mark last CR3 in candidate nestedVM as VM hypervisor
19: end if
20: if event == kvm entry then
21: vcpu = value of vcpu id field
22: if CR3 marked as nestedVM process then
23: Modify Status attribute of nestedVM process as L2 Nested VM non-

root
24: end if
25: if CR3 marked as VM hypervisor then
26: Modify Status attribute of nestedVM process as L1 VM hypervisor

non-root
27: else
28: Modify Status attribute of VM process as VM Process non-root
29: end if
30: Modify Status attribute of vCPUi as VMX non root
31: end if
32: end procedure

Figure 3 depicts how we are able to uncover a nested
VM and its activity. In each VMX transition, we retrieve the
CR3 value of a VM using a new tracepoint. We added a
new tracepoint, vcpu_enter_guest, to extract the CR3
register from the guest area of the VMCS. Then, in order
to detect the level of code execution, we exploit the Nested
VM Detection Algorithm (NDA) by mapping the information
coming from the VMCS and running thread. The pseudocode
of the NDA Algorithm is shown in Algorithm 1. It receives
an event as input and updates the State History Tree (SHT)
with meaningful information as output (Line 1). The SHT is
tree shaped database that we use to build our data model. As

mentioned before, all the events that cause a kvm_exit are
handled by L0 and the state of the nested VM changes to VMX
Root mode (Line 3). We also modify the exit reason attribute
of the vCPU in the SHT (Line 5). When the NDA algorithm
receives the vcpu_enter_guest event, it queries the last
exit reason from the SHT. If the last exit is VMLAUNCH or
VMRESUME, it pushes the CR3 value to a candidate nested
VM process stack (Line 10). In other cases, the CR3 value is
pushed to the stacks of a candidate nested VM hypervisor and
a candidate VM process (Line 12-13).

The kvm_nested_guest is the most important event,
since it shows that either the running vCPU thread is a nested
vCPU or VM vCPU. When the NDA algorithm detects the
event on a pCPU, it marks the thread as a nested VM vCPU,
the CR3 value in the candidate nested VM process stack as
a nested VM process, and the CR3 value in the candidate
nested VM hypervisor stack as a VM hypervisor. (Line 19-
19). When receiving vm_entry, the NDA algorithm queries
if the CR3 value is marked as either a nested VM process, VM
hypervisor, or VM process. Based on the outcome, it modifies
the Status attribute of the vCPU corresponding to the level of
code execution (Line 20-31).

Algorithm 2 Nested VM State Detection (NSD) Algorithm
1: procedure NESTED VM DETECTION(Input: event Output: Updated SHT)
2: if event == sched wakeup then
3: thread = value of comm field
4: Modify Status attribute of VM vCPUi as Wait
5: end if
6: if event == kvm exit then
7: Modify Status attribute of vCPUi in VM vCPU and nested VM vCPU as

VMX root
8: State Modify exit reason attribute of vCPUi as value of exit reason field
9: end if

10: if event == vcpu enter guest then
11: CR3 = store value of CR3 field
12: if CR3 marked as VM hypervisor and last VM hypervisor’s CR3 != CR3

and nested exit reason != hlt then
13: Modify Status attribute of nested VM vCPUi as L 1 Preempted
14: end if
15: if CR3 marked as VM hypervisor and last VM hypervisor CR3 != CR3 and

nested exit reason == hlt then
16: Modify Status attribute of nested VM vCPUi as IDLE
17: end if
18: end if
19: if event == kvm nested vmexit then
20: Modify the nested exit reason attribute as value of exit reason field
21: end if
22: if event == sched switch then
23: next thread = value of next comm field
24: prev thread = value of prev comm field
25: if next thread == vCPUj thread then
26: Modify Status attribute of vCPUj in SHT as VMX root
27: end if
28: if prev thread == vCPUi thread then
29: exit reason = Query exit reason of vCPUi

30: if exit reason == hlt then
31: Modify Status attribute of vCPUi as IDLE
32: else
33: Modify Status attribute of vCPUi as L 0 Preempted
34: end if
35: end if
36: end if
37: end procedure

V. NESTED VM STATE DETECTION BY TRACING L0

As we mentioned in the previous section, each vCPU could
be in one of VMX Root, VMX Non-Root L1, VMX Non-
Root L2, Preemption L0, Preemption L1, Wait ,or IDLE states.
Among the aforementioned states, only in the VMX Non-Root
L2 state is the actual code of the nested VM being executed

directly on a physical CPU. Other states increase completion
time of the task inside a nested VM. As a result, finding
these states lets the cloud administrator diagnose VMs and
their nested VMs better. When a VM or nested VM does not
have any code to execute, it exits with hlt exit reason. If and
only if a VM or nested VM is scheduled out from a pCPU
without exiting with the hlt reason, it implies preemption.
By observing where this preemption occurs, we are able to
distinguish whether it was preempted by the scheduler of the
VM or host. We used some existing kernel tracepoints, and
one added tracepoint, to detect the different states of the nested
VMs as follows.

The Nested VM State Detection (NSD) algorithm is shown
in Algorithm 2. It updates the SHT after extracting meaningful
information from incoming events (Line 1). Initially, when
it receives the sched_wakeup event, it modifies the Status
attribute of the VM as Wait (Line 2-5). The exit reason for the
VM and nested VM is adjusted according to the kvm_exit
and kvm_nested_vmexit events, respectively (Line 3-5).
The L1 preemption detection happens when the NSD receives
the vcpu_enter_guest event. It first inquires whether the
CR3 value is a CR3 of the VM hypervisor and it has been
changed or not. In case the CR3 has changed, if the last
nested exit reason was not hlt (exit reason 12), it interprets it
as L1 the preemption state (Line 13). The vCPU of the nested
VM is IDLE when the last exit reason is hlt (Line 16). The
sched_switch is being used to identify if a nested VM
vCPU is in VMX Root, IDLE, or L0 preemption. First, the
vCPU thread goes to VMX Root state if the next thread is
a vCPU thread (Line 26). If the former thread was a vCPU
thread, the NSD algorithm investigates if the last exit reason
was hlt. In case the last exit reason was not hlt, the VM vCPU
with all its nested VMs goes to the L0 state (Line 33). The
IDLE state is when the vCPU thread is scheduled out with exit
reason of hlt (Line 31).

VI. ARCHITECTURE

We use the KVM module in Linux under the control of
Openstack as part of our architecture. KVM is the most com-
monly used hypervisor for Openstack[13]. For the userspace
part of the hypervisor, we installed Qemu to execute the
operating system support for the VM. We also use the same
architecture for nested VMs and VM hypervisors. Our archi-
tecture is shown in Figure 4. As we can see, events are gathered
by our tracer (LTTng) from the host hypervisor first, and then
the events are sent to trace analyser (TraceCompass)

Host Kernel
Trace

KVM Module
Trace

LTTng

TraceCompass

Openstack

Virtual Machine

VM KernelKVM Module

Host KernelKVM Module

Nested
VM #1

Hardware

Nested
VM #n

Fig. 4: Architecture of our implementation
A. Tracer

Among all tracers in Linux, we choose a lightweight
tracing tool called the Linux Tracing Toolkit Next Generation

(LTTng)[6] due to its low overhead kernel and userspace
tracing facilities. Furthermore, in Linux, the KVM module is
instrumented with static tracepoints and LTTng has appropriate
kernel modules to gather them. Therefore, LTTng is particu-
larly suitable for our experiment since it gathers Linux kernels
and KVM module events with a low impact on VMs. After
the relevant events are generated and collected by LTTng, we
study those with the trace analyser, as elaborated in the next
subsection.

Fig. 5: State History Tree being used to store different infor-
mation of VMs and nested VMs

B. Trace Analysis

We implemented our event analyser in TraceCompass[14].
TraceCompass is an Open-source software for analyzing traces
and logs. It provides an extensible framework to extract
metrics, and to build views and graphs. Figure 5 presents
the structure we use as our data model to store relevant
information about VMs and their nested VMs. This structure
can store and retrieve all the necessary information about VM’s
vCPU, VM’s Threads, and VM’s nested VMs. In addition,
other levels of nested VMs can be recorded inside the nested
VM attributes subtree, recursively. Each attribute has a time
dimensional aspect which changes during time intervals. We
benefit from the information in our data model to build various
visualizations for displaying useful information to a cloud
administrator. We use the State History Tree (SHT) from
TraceCompass to build our data model. The SHT is a tree
shaped disk database of logical nodes with logarithmic access
time[15]. Once the SHT is constructed from incoming events,
we can browse and navigate through the attributes along the
time axis, by querying the SHT.

VII. PERFORMANCE ANALYSIS - NESTED VM
DISSECTION

In this section, we show the result of our analysis to detect
a nested VM and different levels of code execution (e.g., L0,
L1, L2). Our experimental setup is described in Table I. The
Qemu version is 2.5 and the KVM module is based on Linux
kernel 4.2.0-27. We use Sysbench for benchmarking different
resources of the nested VM. We setup a VM with a nested
VM inside and run Sysbench to generate a small workload.

TABLE I: Experimental Environment of Host, Guest, and
NestedVM

Host Environment Guest
Environment

Nested VM
Environment

CPU Intel(R) i7-4790 CPU @ 3.60GHz Two vCPUs Two vCPUs
Memory Kingston DDR3-1600 MHz, 32GB 3 GB 1 GB
OS Ubuntu 15.10 (Kernel 4.2.0-27) Kernel 4.2.0-27 Kernel 4.2.0-27

Qemu v2.5 v2.5 -
LTTng v2.8 v2.8 v2.8

As we can see from Figure 6, VM testU1 has two vCPUs and
is running some code on its CPU0. From the VM’s perspective,
each vm entry is VMX non-root mode and each vm exit is
VMX root mode. Using our analysis, we are able to detect
a nested VM inside the testU1 VM and also find out when
code of the host hypervisor, VM hypervisor, and nested VM is
executing. This analysis is used for investigating the overhead
of nested virtualization.

VIII. USE CASES - IDENTIFYING UNEXPECTED DELAY

In this section, we show how our analysis could reveal
unexpected delays in nested VMs. For these experiments, we
configure our testbed as explained in section VII. We set
Sysbench to run 60 times and compute the first 1000 prime
numbers. After each task execution, it waits for 600 ms and
then redoes the task. We start a VM with two vCPUs and a
nested VM with two vCPUs inside. We pin the nested VM’s
vCPUs to the vCPU 0 of the VM and we pin the vCPUs of
the VM to the pCPU 0 of the host. We do this to ensure that
the code of nested VMs executes on pCPU 0. As expected,
the execution time for same task should be almost equal. On
average, the completion time for finding the first 1000 prime
numbers is 327 ms, with standard deviation of 8 ms.

In the next experiment, we launch two nested VMs in VM
testU1. Both nested VMs have two vCPUs that are pinned
to vCPU 0 of the VM. The rest of the configuration is kept
the same as in the previous experiment, with the exception of
Sysbench executing in the nested VM2, being configured to
wait 1 sec after each execution. We start Sysbench at the same
time for both nested VMs and we start tracing the nested VM1
with LTTng. In our investigation with LTTng, we realized
that the execution time for the same task varied more than
expected. Figure 7 shows the execution time for the same load.
We see that it varies between 339 and 661 ms. The execution
time for 60 executions of the same load is 465 ms with a
standard deviation of 120 ms. This delay could cause serious
problems for real time applications. To investigate the cause of
the execution time variation, we traced the host and used our
NSD algorithm to detect the different states of nested VMs.
Figure 8 shows the result of our analysis as a graphical view.
By tracing only the host, we first detect that the testU1 VM is
running two nested VMs. Then, we further find out when the
code of each nested VM is running on the physical CPU. By
looking at the view, we can infer that, during the execution,
two nested VMs are preempting each other several times. For
more details, we zoom in a section where the two nested VMs
are preempting each other and can observe the events along
with fine grained timing. This preemption occurs at the VM
hypervisor level and is more or less imperceptible by the host
hypervisor.

Fig. 6: Detecting different state of Nested VM

Fig. 7: Execution time of the prime thread (CPU view)

Fig. 8: Resource view of CPU for two nested VMs inside VM testU1 by host tracing - L1 Level Preemption

Fig. 9: Resource view of CPU for one nested VM inside VM testU1 preempted by testU2 by host tracing - L0 Level Preemption

In the next experiment, we turn off one of the nested
VMs and launch two other VMs in the host. We configure
our VMs and Nested VM the same as before, except now
we set Sysbench to wait 800 ms after each execution in the
VMs. Our investigation shows that the completion time on
average for 60 runs of the same load on the nested VM is 453
ms, with a standard deviation of 125 ms. We traced the host
hypervisor and exploit our NSD algorithm to investigate the
problem further. As Figure 9 shows, the nested VM inside VM
testU1 is being preempted. In this experiment, the preemption
occurs at the host hypervisor level, when VMs are preempting
each other.

In the next experiment, we launch another nested VM
inside VM testU1 (NestedVM 2). We also start VM testU2 and
set Sysbench to find the first 1000 prime numbers, like in the
previous experiment. In this experiment, each VM and nested
VM have one CPU and all CPUs are pinned to pCPU 0. We
start the test at the same time for the VM and all nested VMs.
As a result of this experiment, we find that the completion time
for the same task varies a lot. On average, the execution time
for each task takes 651 ms, compared to 327 ms in the first
experiment. Moreover, the standard deviation for 60 Sysbench
runs was 371 ms. We investigated the cause of this problem
by executing the NSD algorithm. Figure 10 shows that nested

VMs were preempting each other along with VM testU2. In
this test, we have preemptions from L0 and L1, which cause
serious delays in the completion time of tasks. It is worth
mentioning that none of these observed preemptions, at any
level, are detectable with conventional state-of-the-art tools.

IX. OVERHEAD ANALYSIS

In this section, we first propose two new approaches to
detect different states of nested VMs. Then, we compare these
two approaches with the NSD algorithm in terms of added
overhead to nested VMs.

The first approach is to trace the host and guest hypervisors
(L1L0). Another technique is to trace both hypervisors and
each nested VM (L2L1L0). In both approaches, the cloud
administrator needs authorization to access each VM and
Nested VM. Table II presents the added overhead to nested
VMs for the different algorithms. We configured the Sysbench
benchmark to study the overhead by running 60 times for
CPU, Disk I/O, and Memory intensive evaluations. Then, we
averaged all results to avoid unexpected latency in our analysis.
We enabled all the necessary events for each analysis. It is
worth mentioning that other approaches need to access VMs
and nested VMs, as compared to our new proposed approach
which is purely a host hypervisor based algorithm. As shown

Fig. 10: Resource view of CPU for two different nested VMs inside VM testU1 preempted by VM testU2 and each other by
host tracing - L0 and L1 Levels Preemption

in the table, our approach adds less overhead to nested VMs
since it just traces the host hypervisor. In the CPU and Memory
intensive workloads, we add negligible overhead. For the I/O
intensive evaluation, the overhead is 34.6 %, which is expected
since LTTng is also using the same Disk to store trace. Indeed,
the performance of a disk degrades significantly when two
processes compete to access the disk since each may have an
efficient sequential access load, but the mix of the two becomes
an inefficient seemingly random access load. This is a well
know problem and using a separate disk for storing tracing
data is recommended whenever I/O bound processes are being
traced.

TABLE II: Comparison of our approach and the other multi-
level tracing approaches in term of overhead for synthetic loads

Benchmark Baseline L2L1L0 L1L0 NSD Overhead(%)
L2L1L0 L1L0 NSD

File I/O (ms) 546 809 773 735 48.2 41.5 34.6
Memory (ms) 497 505 503 502 1.6 1.2 1

CPU (ms) 334 351 340 339 4.9 1.8 1.4

X. CONCLUSION

Nested virtualization is frequently used for software scal-
ing, compatibility, and security in industry. However, in the
nested virtualization context, current monitoring and analysis
tools do not provide enough information about VMs for
effective debugging and troubleshooting. In this paper, we
address the issue of efficiently analyzing the behavior of such
VMs. Our technique can detect different problems along with
their root causes in nested VMs and their corresponding VMs.
Furthermore, our approach can uncover different levels of
code execution along all the host and nested VMs layers. Our
approach is based exclusively on host kernel tracing, which
adds less overhead as compared to other approaches. Our
benchmarks show that the added overhead in our approach
was around 1%. In contrast, the overhead of other approaches
ranged from 1.2 to 4.9%. We also proposed a way to effectively
visualize the different levels of code execution in nested VMs
along with their state. These graphical views also show high
resolution timing of all VMs and nested VMs executions.
As future work, we plan to explore more faults in nested
VMs such as I/O and memory access latency. In addition, our
current technique can also be enhanced to further investigate
interference between nested VMs.

REFERENCES

[1] Giuseppe Aceto et al. “Cloud monitoring: A survey”.
In: Computer Networks 57.9 (2013), pp. 2093–2115.

[2] Ravello Systems: Virtual Labs Using Nested Virtualiza-
tion. https://www.ravellosystems.com/. Accessed: 2016-
06-01.

[3] Amazon CloudWatch. https : / / aws . amazon . com /
cloudwatch/. Accessed: 2016-04-18.

[4] OpenStack telemetry measurements Metrics definition.
http://docs.openstack.org/admin-guide-cloud/telemetry-
measurements.html. Accessed: 2016-03-15.

[5] D. Dean et al. “PerfCompass: Online Performance
Anomaly Fault Localization and Inference in
Infrastructure-as-a-Service Clouds”. In: IEEE
Transactions on Parallel and Distributed Systems
PP.99 (2015), pp. 1–1. ISSN: 1045-9219.

[6] Mathieu Desnoyers and Michel R. Dagenais. “The LT-
Tng tracer: A Low Impact Performance and Behavior
Monitor for GNU/Linux”. In: OLS (Ottawa Linux Sym-
posium) 2006. 2006, pp. 209–224.

[7] Dejan Novaković et al. “DeepDive: Transparently Iden-
tifying and Managing Performance Interference in Vir-
tualized Environments”. In: USENIX Conference on An-
nual Technical Conference. USENIX Association, 2013,
pp. 219–230.

[8] Mohamad Gebai, Francis Giraldeau, and Michel R Da-
genais. “Fine-grained preemption analysis for latency
investigation across virtual machines”. In: Journal of
Cloud Computing. December 2014, pp. 1–15.

[9] Mariano Graziano, Andrea Lanzi, and Davide
Balzarotti. “Hypervisor Memory Forensics”. In:
Research in Attacks, Intrusions, and Defenses: 16th
International Symposium, 2013, pp. 21–40.

[10] A Brief Review of VMs’ 40 Year History. http://www.
vm.ibm.com/vm40hist.pdf. Accessed: 2016-06-01.

[11] Intel Corporation. “Intel 64 and IA-32 Architectures
Software Developers Manual”. In: December 2015,
pp. 1–3883.

[12] Muli Ben-Yehuda et al. “The Turtles Project: Design
and Implementation of Nested Virtualization”. In: 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 10). Vancouver, BC: USENIX
Association, 2010.

[13] Open source software for creating clouds. https://www.
openstack.org/. Accessed: 2016-04-1.

[14] Trace Compass. https : / /projects . eclipse .org /projects /
tools.tracecompass. Accessed: 2016-04-3.

[15] A. Montplaisir-Goncalves et al. “State History Tree: An
Incremental Disk-Based Data Structure for Very Large
Interval Data”. In: Social Computing (SocialCom), 2013
International Conference on. Sept. 2013, pp. 716–724.

